REGISTRATION WITH IRAQI JOURNAL OF PHARMACEUTICAL SCIENCES

(Open Journal System OJS)
Profile

First Name *

Middle Name

Last Name *

Affiliation *

Country *

Login

Email *

Username *

Password *

Repeat password *

Would you be willing to review submissions to this journal?

☐ Yes, request the Reviewer role.
Input your username

Input your password

Plagiarism
The editorial board checks the plagiarism of research submitted for publication using Grammarly program and the accepted limit for plagiarism is 20%.
Click here
Request for Review

You have been selected as a potential reviewer of the following submission. Below is an overview of the submission, as well as the timeline for this review. We hope that you are able to participate.

Article Title

The submissions

Abstract

The Register

View All Submission Details
Review Schedule

- **Editor’s Request**: 2017-11-10
- **Response Due Date**: 2017-11-17
- **Review Due Date**: 2017-11-24

About Due Dates

- **Accept Review, Continue to Step #2**
- **Decline Review Request**

Click here if you accept to review manuscript

Click here if you decline to review manuscript
Reviewer Guidelines

This publisher has not set any reviewer guidelines.
Review: The submissions

1. Request
2. Guidelines
3. Download & Review
4. Completion

Review Files

[File: Author, Introduction.docx]
Manuscript

Review
Enter (or paste) your review of this submission into the form below.

Upload
Upload files you would like the editor and/or author to consult, including revised versions of the original review file(s).

Reviewer Files

Click here
Abstract

A rapid, sensitive and without extraction spectrophotometric method for determination of clonazepam (CLO) in pure and pharmaceutical dosage forms has been described. The proposed method was simply depended on charge transfer reaction between reduced CLO (π-donor) and metal (N-methyl-p- amino phenol sulfate) as a chromogenic reagent (π- acceptor). The reduced drug, with zinc and concentrated hydrochloric acid, produced a purple colored soluble charge-transfer complex with metal in the presence of sodium metaperiodate in neutral medium, which has been measured at λmax 532 nm. All the variables which affected the developed and the stability of the colored product such as concentration of reagent and oxidant, temperature and time of reaction were investigated and optimized. The linearity of the method was observed within a concentration range 5-40 μg ml⁻¹ CLO and with a correlation coefficient not less than 0.99, while the molar absorptivity and sandell sensitivity were 3.473×10³ L.mole⁻¹.cm⁻¹ and 0.0909 μg cm⁻² respectively. The present work includes also the usage of the Benesi–Hildebrand equation for the evaluation of the association constant and molar absorptivity of the colored complex. Finally the proposed method was successfully applied for the determination of CLO in tablets.
Introduction
The most commonly used techniques for investigating the relationship between two quantitative variables are correlation and linear regression. Correlation quantifies the strength of the linear relationship between a pair of variables, whereas regression expresses the relationship in the form of an equation. For example, in patients attending an accident and emergency unit (A&E), we could use correlation and regression to determine whether there is a relationship between age and urea level, and whether the level of urea can be predicted for a given age.

Scatter diagram
When investigating a relationship between two variables, the first step is to show the data values graphically on a scatter diagram. Consider the data given in Table 1.

Table 1
Age and \(\ln \) urea for 20 patients attending an accident and emergency unit

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (years)</th>
<th>(\ln) urea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Upload your file
Recommendation

Select a recommendation and submit the review to complete the process. You must enter a review or upload a file before selecting a recommendation.

* Denotes required field

Choose One

This field is required.

Submit Review Go Back
Are you sure you want to submit this review?
Review: The submissions

Review Submitted

Thank you for completing the review of this submission. Your review has been submitted successfully. We appreciate your contribution to the quality of the work that we publish; the editor may contact you again for more information if needed.